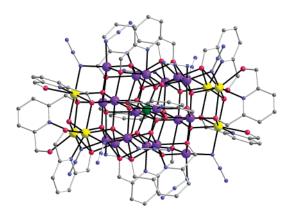


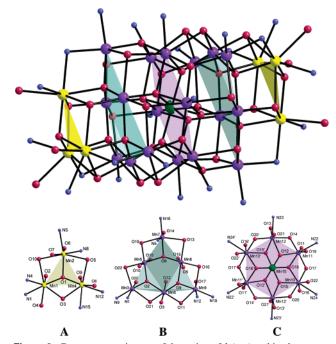
Published on Web 03/26/2004

Single-Molecule Magnets: A Mn_{25} Complex with a Record S=51/2 Spin for a Molecular Species


Muralee Murugesu,[†] Malgorzata Habrych,[†] Wolfgang Wernsdorfer,[‡] Khalil A. Abboud,[†] and George Christou*,[†]

Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, and Laboratoire Louis Néel-CNRS, BP166, 25 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France

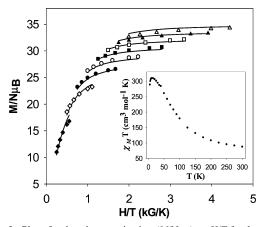
Received December 12, 2003; E-mail: christou@chem.ufl.edu


Single-molecule magnets (SMMs) offer a molecular (or "bottom-up") approach to nanoscale magnetic materials.¹ They derive their properties from a combination of a large spin (S) and an Ising (easy-axis) magnetoanisotropy (negative zero-field splitting parameter, D). Several classes of SMMs are now known, ¹⁻³ most containing Mn^{III}, but there is a continuing need for new SMMs to improve our understanding of this phenomenon. We now report a new Mn₂₅ SMM, which (i) is mixed-valent 6Mn^{II}, 18Mn^{III}, Mn^{IV}; (ii) has an unusual five-layer structure; and (iii) possesses a record S = 51/2 ground-state spin for a molecular species. In the latter context, this complex is a new addition to the family of high-spin molecules, only some of which are also SMMs; most contain Mn^{II,III} or Fe^{III}, and only very few possess S > 10.4

A stirred slurry of MnCl₂·4H₂O (3 equiv), pyridine-2,6-dimethanol (pdmH₂; 10 equiv), and NaN₃ (10 equiv) in MeOH/MeCN (1:2 v/v) was treated with NMe₄OH (1 equiv). This gave a dark brown solution from which slowly crystallized [Mn₂₅O₁₈(OH)₂(N₃)₁₂-(pdm)₆(pdmH)₆](Cl)₂·12MeCN (1·12MeCN) in ~30% yield. Complex 1 crystallizes⁵ in triclinic space group $P\bar{1}$. The Mn₂₅ cation lies on an inversion center and has a barrel-like cage structure (Figure 1). The 12 μ_4 -O²⁻, 6 μ_3 -O²⁻, and 2 μ_3 -OH⁻ ions hold the

Figure 1. Structure of the cation of 1. Color code: green, Mn^{IV} ; purple, Mn^{II} ; yellow, Mn^{II} ; red, O; blue, N; gray, C.

core together, as well as chelating/bridging pdm²⁻/pdmH⁻ and both terminal and bridging N_3^- groups. The metal oxidation states and the protonation levels of O^{2-} , OH^- , pdm^{2-} , and $pdmH^-$ O atoms were established by Mn and O bond valence sum calculations,⁶ inspection of metric parameters, and detection of Mn^{III} Jahn—Teller (JT) elongation axes. The core (Figure 2) may be dissected into five parallel layers of three types with an **ABCBA** arrangement. Layer **A** is a Mn^{II}₃ triangular unit (Mn1, Mn2, Mn4) with a capping μ_3 -OH⁻ ion; layer **B** is a Mn^{III}₆ triangle (Mn3, Mn5, Mn6, Mn7,

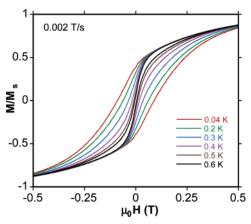

Figure 2. Centrosymmetric core of the cation of 1 (top) and its three types of constituent layers (bottom), color coded for clarity. Atom color code: green, Mn^{IV}; purple, Mn^{III}; yellow, Mn^{II}; red, O; blue, N.

Mn8, Mn9) comprising three corner-sharing Mn^{III}_3 triangles; and layer C is a Mn^{III}_6 hexagon (Mn11–Mn13, Mn11a–Mn13a) with a central Mn^{IV} ion (Mn10). Layer C has the Anderson-type structure seen in some Mn complexes. ^{4f} Each layer is held together and linked to its neighboring layers by a combination of oxide, alkoxide, and/or azide bridges. The outer coordination shell is occupied by pdm^{2-} , $pdmH^-$, and terminal azide ligands (Figure 1). Each Cl^- anion is hydrogen-bonded to a single μ_3 -OH $^-$ group. There are no significant intermolecular interactions. There are two types of Mn^{III} ions: those in layer B are nearly octahedral with JT axially elongated Mn^{III} -O bonds (2.147(3)–2.360(4) Å), whereas those in layer C are seven-coordinate and nearly pentagonal bipyramidal, with axially elongated Mn^{III} -O bonds (2.283(4)–2.331(4) Å).

Solid-state DC magnetic susceptibility ($\chi_{\rm M}$) data were collected in the 5.0–300 K range in a 1 kG (0.1 T) field. The $\chi_{\rm M}T$ value steadily increases from 88.4 cm³ K mol⁻¹ at 300 K to a maximum of 310 cm³ K mol⁻¹ at 15 K, before dropping to 289 cm³ K mol⁻¹ at 5.0 K (Figure 3, inset). The data strongly suggest a very large ground-state spin; the 5 K value suggests an S in the 47/2-53/2 range, depending on g. To identify the ground state, magnetization (M) data collected in the 1.8-4.0 K and 1-8 kG ranges were fit by matrix diagonalization to a model that assumes only the ground state is populated, includes axial zero-field splitting ($D\hat{S}_z^2$) and

[†] University of Florida. ‡ Laboratoire Louis Néel.

Laboratoire Louis Néel.


Figure 3. Plot of reduced magnetization (M/N μ _B) vs H/T for 1 at 8 (△), 7 (▲), 6 (□), 5 (■), 4 (○), 3 (●), 2 (♦), and 1 (♦) kG. Solid lines are the fits; see the text for the fitting parameters. Inset: Plot of $\chi_M T$ vs T at 1 kG.

Zeeman interactions, and incorporates a full powder average. We used only low fields (≤ 8 kG) to avoid problems associated with M_S levels from excited states with higher S values crossing with the ground state, which would lead to an erroneously high value for the ground-state S. The fit (solid lines in Figure 3) gave S=51/2, D=-0.022(1) cm⁻¹, and g=1.72(1). But the fits for S=49/2 and 53/2 were only slightly inferior, and we thus conclude that the ground-state spin of $\mathbf{1}$ is $S=51/2\pm1$. Data collected up to 4 or 7 T could not be satisfactorily fit. Such a large S value is supported by the in-phase AC susceptibility signal (in zero DC field) of ~ 315 cm³ K mol⁻¹ at 5 K, indicating the large $\chi_M T$ value of Figure 3 not to be an artifact of the applied DC field.

In fact, an S = 51/2 ground state is also consistent with the expected spins of layers **A**, **B**, and **C** of 15/2, 0, and 21/2, respectively. These are the values calculated for (i) three ferromagnetically coupled Mn^{II} spins in layer **A**, (ii) an antiferromagnetically coupled Mn^{III} triangle in layer **B**; and (iii) six Mn^{III} spins in layer **C** strongly antiferromagnetically coupled to the central Mn^{IV} spin and thus aligned parallel to each other. Parallel alignment of the spins of layers **A** and **C** as a result of antiferromagnetic interactions with Mn ions in layer **B** then predicts a molecular spin of S = 15/2 + 21/2 + 15/2 = 51/2, rationalizing the high observed S value and supporting a conclusion that **1** has an S = 51/2 ground state.

The S=51/2 ground state and negative D value suggested that 1 might be an SMM. The upper limit to the relaxation barrier is $(S^2-1/4)|D|$ for a half-integer spin, or only $14.3~{\rm cm}^{-1}$ for 1, but the actual (or effective) barrier ($U_{\rm eff}$) will be significantly less due to magnetization quantum tunneling through the barrier. Single crystals of 1·12MeCN were therefore investigated using a micro-SQUID,⁸ and the obtained M vs. applied DC field sweeps (Figure 4) exhibited hysteresis below $\sim 0.6~{\rm K}$, their coercivities increasing with decreasing temperature as expected for an SMM. Fitting of magnetization decay data collected in the $0.04-1.0~{\rm K}$ range gave $U_{\rm eff}=8.3~{\rm cm}^{-1}=12~{\rm K}$. The low temperature at which 1 is an SMM is clearly due to the small D value, consistent with the nearly perpendicular disposition of the MnIII anisotropy axes.

Complex **1** is the largest mixed-valent Mn^{II}/Mn^{IV} cluster and the largest spin SMM to date (the next highest being an Fe₁₉ SMM with S = 33/2). It also possesses the largest S for an isolated molecule; $[Mo_6Mn_9(CN)_{48}(MeOH)_{24}]$ has also been suggested to

Figure 4. Magnetization (M) vs applied DC field sweeps at the indicated sweep rate and temperatures. M is normalized to its saturation value, M_s , at 1 T.

be S=51/2, although the situation is unfortunately complicated by strong intermolecular interactions and long-range ferromagnetic ordering below 44 K.^{4e} The related W complex has an S=39/2 ground state.^{4c} The next largest spin for any molecule after S=51/2 is the S=23 of a recently reported Fe₁₄ complex.^{4d}

Acknowledgment. This work was supported by the National Science Foundation.

Supporting Information Available: Crystallographic details (CIF), Mn bond valence sums, and magnetism data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bulletin **2000**, 25, 66, and references therein.
- (2) (a) Sessoli, R.; Tsai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1993, 115, 1804. (b) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.
 (3) (a) Wernsdorfer, W.; Aliaga-Alcalde, N.; Hendrickson, D. N.; Christou,
- (3) (a) Wernsdorfer, W.; Aliaga-Alcalde, N.; Hendrickson, D. N.; Christou, G.; Nature 2002, 416, 406. (b) Soler, M.; Wernsdorfer, W.; Abboud, K. A.; Hendrickson, D. N.; Christou, G. Polyhedron 2003, 22, 1777. (c) Soler, M.; Wernsdorfer, W.; Abboud, K. A.; Huffman, J. C.; Davidson, E. R.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 2003, 125, 3576. (d) Andres, H.; Basler, R.; Blake, A. J.; Cadiou, C.; Chaboussant, G.; Grant, C..M.; Güdel, H.-U.; Murrie, M.; Parsons, S.; Paulsen, C.; Semadini, F.; Villar, V.; Wernsdorfer, W.; Winpenny, R. E. P. Chem. Eur. J. 2002, 8, 4867. (e) Brechin, E. K.; Soler, M.; Christou, G.; Helliwell, M.; Teat, S. J.; Wernsdorfer, W. Chem. Commun. 2003, 1276. (f) Price, D. J.; Batten, S. P.; Mouberski, B.; Murray, K. S. Chem. Commun. 2002, 762.
- S. R.; Moubaraki, B.; Murray, K. S. Chem. Commun. 2002, 762.

 (4) (a) Scuillier, A.; Mallah, T.; Verdaguer, M.; Nivorozkhin; Tholence, J. L.; Veillet, P. New J. Chem. 1996, 20, 1. (b) Goodwin, J.; Sessoli, R.; Gatteschi, D.; Wernsdorfer, W.; Powell, A. K.; Heath, S. L. J. Chem. Soc., Dalton Trans. 2000, 1835. (c) Zhong, Z. J.; Seino, H.; Mizobe, Y.; Hidai, M.; Fujishima, A.; Ohkoshi, S.; Hashimoto, K. J. Am. Chem. Soc. 2000, 122, 2952. (d) Low, D. M.; Jones, L. F.; Bell, A.; Brechin, E. K.; Mallah, T.; Riviere, E.; Teat, S. J.; McInnes. E. J. Angew. Chem., Int. Ed. 2003, 42, 3781. (e) Larionova, J.; Gross, M.; Pilkington, M.; Andres, H.; Stoeckli-Evans, H.; Güdel, H.; Decurtins, S. Angew. Chem., Int. Ed. 2000, 39, 1605. (f) Pilawa, B.; Kelemen, M. T.; Wanka, S.; Geisselmann, A.; Barra, A. L. Europhys. Lett. 1998, 43, 7.
- Barra, A. L. Europhys. Lett. **1998**, 43, 7.

 (5) (a) Anal. Calcd (Found) for dried **1**: C, 25.72 (26.01); H, 2.36 (2.68); N, 17.14 (17.15). (b) Crystal data for **1**·12MeCN: $C_{108}H_{128}Cl_2Mn_{25}N_{60}O_{44}$, 4415.10 g mol⁻¹, triclinic $P\bar{1}$, a=15.8921(8), b=16.5027(8), c=17.2565(8) Å, $\alpha=98.881(2)$, $\beta=99.923(2)$, $\gamma=117.003(2)^\circ$, Z=1, V=3830.0(3) Å³, $d_{calc}=1.914$ g cm⁻³, T=173 K. Final $R_1=5.55$ and w $R_2=15.31\%$. The crystal was a small dark brown plate; an absorption correction was applied.
- (6) (a) Bond valence sum calculations for Mn^{II}, Mn^{III}, and Mn^{IV} ions gave oxidation state values of 1.95–2.02, 2.90–3.02, and 3.99, respectively. (b) Liu, W.; Thorp, H. H. *Inorg. Chem.* 1993, 32, 4102.
- (7) Of course, other ways of qualitatively rationalizing an S = 51/2 state in such a large molecule are also feasible.
- (8) Wernsdorfer, W. Adv. Chem. Phys. 2001, 118, 99. JA0316824